
WHITE PAPER:

OVERVIEW
DBMS vendors want to improve the performance—specifically, execu-

tion speed—of their products, to meet the increasing needs of their

customers and remain competitive. Existing approaches for perfor-

mance improvement, such as domain-specific architectures, query

compilation, and JIT compilation, are costly for vendors to implement

in both time and money.

Field specialization is a patented new approach for DBMS perfor-

mance improvement that addresses these problems. It enjoys the

following advantages:

✔✔ Significant performance improvement

✔✔ Requires only small, localized changes to existing DBMS code

✔✔ Quick time-to-market

✔✔ Flexibility in selecting where to specialize code

✔✔ Granular control, enabling applications to be customized to indi-
vidual customer needs

✔✔ Equally applicable to legacy DBMS code and to cutting-edge tech-
nology, such as cloud-based, main-memory, and MPP DBMSs

✔✔ Complementary to other performance improvement approaches

✔✔ Applications built on top of DBMS require no changes

✔✔ No action required for end users

While field specialization is applicable to many different software ap-

plication domains, this document focuses on the application of field

specialization to DBMSs.

As an ongoing proof of concept, field specialization was applied to an

industry-leading DBMS, PostgreSQL (PG) 9.3, and performance was

evaluated using the industry-standard TPC-H and TPC-DS bench-

marks. The total runtimes of the top five queries were as follows.

Benchmark PG 9.3
Field-Specialized

PG 9.3
Field Specialization

Advantage

TPC-H 105sec 51sec 2.04X speedup

TPC-DS 3,063sec 1,001sec 3.06X speedup

Table 1. Speedup provided by field specialization

Field specialization thus currently provides 2X–3X speedup in Post-

greSQL 9.3 for these two oft-used benchmarks.

This white paper, intended for technical readers, describes:

•	 The concept of field specialization

•	 How Dataware Ventures’ products can support the DBMS vendor
in the field specialization process

•	 How other performance improvement approaches compare

•	 Performance improvements possible with field specialization

THE DBMS VENDOR’S CHALLENGE
DBMS vendors receive constant pressure from their customers, the

DBMS end user, to improve the performance of their DBMS products.

Interviews with CIOs from major companies revealed the following:

•	 “Performance is always an issue.”

•	 “Reducing the mean time of queries is very important.”

•	 “We invest hundreds of thousands of dollars each year to speed
up queries.”

•	 “Everyone is desirous of 2X performance improvement.”

•	 “Queries have to run fast.”

•	 “We need to run apps faster during the day.”

And the list goes on. Clearly, DBMS vendors are under the gun to deliv-

er faster products before their competitors do.

The main question DBMS vendors ask themselves, then, is: “How?”

Several approaches exist to improve DBMS performance, from

optimizing code piece-by-piece to rearchitecting the entire DBMS to

incorporate a new technology. Each approach has its advantages and

disadvantages, but all are costly in terms of time and money.

Field specialization is a new approach for improving DBMS perfor-

mance that is complementary to these other approaches while being

easy to deploy and not requiring rearchitecting the DBMS.

WHAT IS FIELD SPECIALIZATION?
A DBMS is designed to be generic: to handle any workload (i.e., data,

schema, queries) that a user defines. This generality incurs a perfor-

mance cost. For example, fetching a row requires frequently looking

up schema information to get e.g. the number of columns, their type,

and their size, even though the schema information is usually static.

Any particular workload has information that is specific to it, such as

this schema information. The key insight behind field specialization is

that workload-specific information induces runtime invariants in the

DBMS code that can be exploited to improve DBMS performance.

DATAWARE
V E N T U R E S Field Specialization

www.datawareventures.com, July 2015 1

Field specialization is the process of inserting spiffs into DBMS code

so that the DBMS can specialize itself at runtime to exploit runtime

invariants.

A spiff, which stands for specializer in the field, is code that dynamical-

ly creates specialized code at DBMS runtime. The specialized code is

both smaller and faster than the original unspecialized code.

Field specialization gets its name from the fact that the code is spe-

cialized “in the field,” i.e., after the DBMS has been deployed and is

running at the end user’s site. A spiff uses the actual value of a runtime

invariant—which can only be known at runtime—to dynamically

produce code that is specialized to that particular value of the runtime

invariant.

How Spiffs Improve Performance
Current technology trends, including main memory databases and

hybrid SSD secondary storage, shift system performance drivers away

from disk performance and towards in-memory execution parameters.

Performance improvements from the specialized code created by

spiffs result primarily from a reduction in the number of memory ref-

erences (including instruction and data references) and cache misses.

As these shifts in technology continue, the performance impact of field

specialization will be magnified beyond what we obtain today.

A Simple Example
•	 A database has a “sales” table with 42 columns. The number of

columns doesn’t change during the execution of a query. Thus,

the number of columns is an example of a runtime invariant.

•	 The DBMS contains a small generic routine to extract individual

column values from an input row. The routine performs a loop

over the columns.

•	 In contrast, a spiff will create specialized code at DBMS runtime.

This specialized code is a result of the spiff performing

–– constant folding,

–– loop unrolling 42 times, and

–– memory access coalescing to reduce cache pressure.

Thus, this spiff replaces a generic piece of code with code that is

highly specialized to values only known at table creation time.

•	 Each table in the database will have its own specialized code

based on its number of columns. The specialized code for each

table will be created by this same spiff, at DBMS runtime.

Opportunities Everywhere
Runtime invariants of many kinds can be identified during a spectrum

of times, from database creation to query execution. Field specializa-

tion can take advantage of all of these kinds of invariants.

Individual spiffs each contribute a performance improvement. An

individual spiff may contribute a mild improvement across the board,

or a more extreme improvement in specific but commonly-encoun-

tered cases. In concert, these spiffs provide a significant performance

improvement to the DBMS.

DATAWARE’S SOLUTION
Dataware offers an end-to-end solution to support the field specializa-

tion process. The solution consists of two main components:

•	 The Spiff Runtime Environment (SRE) provides an API to manage

spiffs and the specialized code they create at DBMS runtime.

•	 The Spiff Toolset provides static and dynamic program analyses

to identify runtime invariants in the DBMS code and supports the

creation of spiffs for those invariants.

Spiff Toolset
DBMS

Source Code

Workload 1
Specialized DBMS

Source Code

Static Analysis
Dynamic Analysis

Spiff Creation

SRE
Spiff Definition

Specialized Code Creation
Cache Placement

Workload N

…

Garbage Collection

Figure 1. Dataware’s solution

The Spiff Runtime Environment (SRE)
The SRE is a library that the DBMS vendor will use to manage spiffs

and the specialized code they create.

✔✔ Supports the definition of spiffs at DBMS development time.
The SRE allows spiffs to be defined as simple code annotations
around existing DBMS code.

✔✔ Supports spiffs in the creation of specialized code at runtime

✔✔ Supports managing the specialized code at DBMS runtime,
including optimized cache placement, dynamic linking, and
garbage collection

The SRE makes it easy to define spiffs in the DBMS code and allows the

DBMS to easily create code dynamically at DBMS runtime.

The Spiff Toolset
The Spiff Toolset supports the DBMS developer in identifying runtime

invariants, creating spiffs that exploit those invariants, and inserting

SRE API calls to support the spiffs and specialized code at runtime.

✔✔ Provides sophisticated static analyses of the DBMS source code to
identify all possible runtime invariants

✔✔ Provides dynamic analyses of the DBMS on a given workload to
rank the runtime invariants in terms of cost and benefit

✔✔ Supports the creation of spiffs for the most cost-effective runtime
invariants

www.datawareventures.com, July 2015 2

The closer an end user’s workload is to the workload used in the dy-

namic analysis step, the better the performance improvement will be

for that user. Many representative workloads can be used in this step

to cover a broad range of use cases, or a single workload can be used

to highly specialize the DBMS for that workload.

DEPLOYMENT PROCESS
First, the DBMS vendor identifies opportunities for field specializa-

tion. The vendor may already be aware of certain opportunities, or

the vendor can use the Spiff Toolset to identify opportunities. The

Spiff Toolset analyzes the DBMS both statically and dynamically. The

dynamic analysis uses one or more representative workloads to rank

candidate spiffs.

Next, spiffs are created based on the identified opportunities. The

DBMS vendor can create the spiffs themselves, or the DBMS vendor

can use the Spiff Toolset to create the spiffs.

Finally, the spiff-enhanced DBMS code is compiled by the DBMS

vendor. The resulting DBMS binary is now enabled with field special-

ization. Once deployed, the DBMS will automatically specialize itself

to each user’s unique workload without any further action from either

the DBMS vendor or the user.

In a typical use case, the DBMS vendor ranks candidate spiffs using

the workload of the suite of Enterprise Application Software (EAS)

applications that use their DBMS, such as CRM, ERP, BI, and HR appli-

cations. Since EAS applications will be bundled with a field-specialized

DBMS, the vendor can market enhanced versions of each of those EAS

applications, in addition to marketing field-specialized versions of

their DBMS products.

Dataware’s products can be easily incorporated into the vendor’s

existing software engineering processes and methodologies:

•	 Inserting spiffs results in small, local changes and retains the

original semantics of the DBMS.

•	 As the DBMS code base evolves, existing spiffs can be updated by

the DBMS vendor and new spiffs can be inserted to exploit any

new invariants in the DBMS code.

COMPARISON WITH OTHER
APPROACHES
Field specialization stands apart from existing approaches for

improving DBMS performance due to its ease of incorporation into

existing products, general applicability, and compatibility with other

performance improvement approaches. See Table 2 for a tabular

comparison.

Domain-Specific DBMS Architectures
Architectures specialized to particular domains, such as column-stores

(e.g., MonetDB) and shared-nothing architectures (e.g., VoltDB), can

offer significant performance improvements for databases that fall

within their particular domain. Field specialization, in contrast, does

not constrain the domain-applicability of a DBMS, nor does field

specialization require rearchitecting the existing DBMS or applica-

tions built on top of the DBMS. In addition, field specialization can be

applied to the aforementioned new architectures to further improve

their efficiency.

Just-in-Time (JIT) Compilation
Field specialization is in some ways reminiscent of JIT compilation.

While both involve runtime code optimization, their domains are very

different. JIT compilation aims to speed up programs in managed

languages such as Java and C# by optimizing away the interpretive

overhead of byte code. Field specialization, by contrast, is applied

to DBMSs implemented in C or C++ and optimizes the code by using

information extracted from runtime invariants to specialize away

low-level overheads.

Query Compilation
Query compilation exploits query-specific runtime information to

compile a query into executable code, producing efficient code tai-

lored to such runtime information. Nevertheless, performing compila-

tion during query runtime incurs overhead that cannot be ignored, es-

pecially in OLTP workloads. In addition, maintaining a query compiler

Field
Specialization

Domain-Specific
Architectures

JIT
Compilation

Query
Compilation

Improves legacy code 4

Domain independent 4 4 4

Provides dynamic code optimization 4 4 4

Applies to native code 4 4 4

Avoids query-time compilation 4 4

Effort to implement/maintain Low High High High

Table 2. Approaches for DBMS vendors to improve the performance of their products

www.datawareventures.com, July 2015 3

on top of a standard-conformant DBMS, where new features are added

frequently, is costly for the DBMS vendor. In contrast, field specializa-

tion is performed on the legacy DBMS code and takes advantage of

runtime information without invoking the compiler at query runtime.

Field Specialization is Complementary
Table 2 on the previous page summarizes the pros and cons of these

other approaches. We note however that field specialization is com-

plementary to those approaches, and thus can be used in concert with

any or all of them.

PERFORMANCE IMPACT
As previously mentioned, developers at Dataware have used field spe-

cialization to insert a modest number of spiffs into an industry-leading

DBMS, PostgreSQL (PG) 9.3. Performance was compared using the

TPC-H and TPC-DS benchmarks on hardware consisting of 4 x Intel

Xeon E5-2670 v2 with 2 X 16GB (32GB) ECC DIMMs and a 800GB 9 GBPS

SDD. The average speedups of the top five queries were 2.04X and

3.06X in the TPC-H and TPC-DS benchmarks, respectively. The average

speedups across all queries in these benchmarks were 1.42X and

1.71X, respectively. Some of the benchmark queries did not exercise

code that was specialized by these particular spiffs, presenting oppor-

tunities for additional spiffs that will increase the average speedups.

To see how the benefits of field specialization compare with those

of current development efforts, two versions of PostgreSQL were

compared on the TPC-H and TPC-DS benchmarks on the hardware

described above, for the top five queries.

Comparison TPC-H
Speedup

TPC-DS
Speedup

Development
Effort

PG 9.1 vs. PG 9.3 1.17X 1.37X 130 man-months

PG 9.3 vs. field-specialized PG 9.3 2.04X 3.06X 2 man-months

Table 3. Speedup vs. development cost

As shown, field specialization allows better speedup with less effort.

(Development from PG 9.1 to PG 9.3 wasn’t fully focused on perfor-

mance; these numbers should be interpreted accordingly.)

SUMMARY
DBMS vendors are expected to constantly improve the performance

of their products. Field specialization is a patented new approach for

improving DBMS performance that leverages runtime invariants in

the DBMS, where the invariants arise from characteristics of the user’s

workload. These runtime invariants are used to create and insert spiffs

into the DBMS; spiffs dynamically create specialized code at runtime,

effectively allowing the DBMS to specialize itself at runtime and

achieve significant runtime performance benefits.

Dataware offers an end-to-end solution to support the field special-

ization process: detecting runtime invariants, creating spiffs—simple

code annotations around existing DBMS code—for those invariants,

and managing spiffs and the specialized code they create at runtime.

Spiffs permit fine-grained control of the specialization process and

customization to individual customer needs. Field specialization

can be easily incorporated into legacy application code as well as

into emerging technologies, such as cloud-based and main-memory

DBMSs. Field specialization is complementary to other approaches to

performance improvement and can work in concert with them, there-

by yielding multiplicative speedups.

NEXT STEPS
To learn more about field specialization, visit

www.datawareventures.com or email info@datawareventures.com.

DATAWARE
V E N T U R E S

9040 S. Rita Road, Suite 1270
Tucson, AZ 85747

+1 520 490 4843

www.datawareventures.com, July 2015 4

